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Abstract

The notion of squeezing in spin systems is clarified and principle for spin squeezing is

shown. Two twisting schemes are proposed as building blocks for spin squeezing and are

shown to reduce the standard quantum noise, _, of the coherent S-spin state clown to the

order of S 1/3 and ½. Applications to partition noise suppression are briefly discussed.

1 Introduction

First, we will review the uncertainty relations and coherent states of spin [1] compared to those of

boson. Then we will define squeezing in spin systems and show the principle for spin squeezing [2}.

Secondly, we will propose fundamental schemes for spin squeezing, namely, one-axis twisting and

two-axis counter-twisting, and discuss their limits [2]. Finally, applications are briefly discussed.

2 Uncertainty Relations- Spin vs. Boson-

Let us begin by comparing spins and bosons with respect to their uncertainty relations (TABLE I.)

The spin commutation relation is IS,, S_]=iSk, where S,.j.k are orthogonal spin components and the
relation holds for any permutation of i, j, k. The same is true for associated uncertainty relations.

(AS, 2) (AS_ _) > ](Sk)12/4. This is quite different from the boson uncertainty relation since the right

hand side (RHS) is state-dependent [3].
The coherent states can be defined as the minimum and equal uncertainty state; the state that

minimizes the left hand side with the two uncertainties being equal. The eigenstate of the spin

component of a certain direction (0, V), Se._=5'z sin 0 cos ¢+S_ sin 0 sin ¢+Sz cos 0. with eigenvalue

S satisfies this condition if Sk is the eigen component (which is S) and S, and Sj are normal

components (whose variances are S/2). This state is called a coherent spin state (CSS), Bloch

state, or directed angular momentum state [1].

Before talking about squeezing, let's look at the linear motions. A linear Hamiltonian propor-

tional to an arbitrary spin component rotates the spin vector about an axis. This is a precession.
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TABLE I. Spin vs. boso_ with res._..__pectto uncertainty relation, coherent state and squeezing
Spin

AS3 AS _2 _> Sk 2 4
S,,_I O, ¢) = Sl#, ¢)
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Squeezed
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It is regarded as a translation of the state on the spherical phase space of the spin. Although the

rotation may change the uncertainties of the original spin components, the coherent spin state

remains the minimum and _uai uncertainty state as long as the component on the RHS is taken

parallel to the mean spin vector.
Now let's discuss squeezing in a spin system. In a boson system, it is always regarded as

squeezing if a certain quadrature amplitude has a variance smaller than the square root of the
RHS of the uncertainty relation; that is 1/4. If we define the squeezing of spin likewise [4] -- a

certain spin component has a variance smaller than the square root of the RHS -- we can squeeze

the spin by just rotating it. If this were really squeezing, the experimentalists would be very

happy since they could do this easily. Unfortunately, it doesn't offer any improvement beyond the

standard quantum limit.

The quantum limit of spin systems can be attributed to the directional uncertainties of the

spin vector. Therefore the uncertainties normal to the mean spin vector are the relevant quantities

to be squeezed. To eliminate the superficial coordinate dependency, we write the criterion of the

spin squeezing as (AS±2/ < S/2 (one of the component normal to the mean spin vector has a

variance smaller than S/2) [2].

The next problem is how to squeeze the spin. Boson squeezing is regarded as attenuation of

one quadrature amplitude and amplification of the other by the same factor. This can be done

by a degenerate parametric amplifier described by a quadratic nonlinear Hamiltonian. Geomet-

rically it is an area-preserving linear transformation on the boson phase space R _. The global

shrinking/stretching is possible because boson phase space is an open plane.

In the spin case, permutative commutation relations obviously prohibit such a simple atten-

uation/amplification. In other words, global shrinking/stretching is impossible on the spherical

phase space S2 of spin. The squeezing of spin is inevitably localized in phase space and, therefore,

can be quite different from that of bosons.

3 Squeezed Spin States

Let's see how spin can, in principle, be squeezed. An S-spin system can be considered as a

collection of a number, 2S, of 1/2-spins. In the coherent spin state pointing up, all spins are

up (Fig.1 (a)). Therefore the z-component of the total system is S. However, whether the x-

component of each spin takes 1/2 or -1/2 is completely independent and random. Therefore the

variance is simply the sum of individual variances, 1/4, which is S/2. The same is true for the

y-component. These uncertainties are the origin of the standard quantum noise of the CSS. The

spin vector S is like a cone rather than an arrow. The diverging angle of the cone decreases with

increasing S, since the base radius of the cone is proportional to _/S.

In practical applications, it is desirable to reduce quantum noise for a given S. We have just seen

that the origin of the standard quantum noise is a lack of quantum correlation among individual

spins. If they are correlated, fluctuations of individual spins can cancel each other out (Fig.1 (b)).

We refer to such a state as a squeezed spin state (SSS) [2]. Such a state can be conceived as an

elliptical cone [5].

One way to establish the quantum correlations among individual spins is to let them interact
with each other. This is a nonlinear interaction. Another way is to let them interact with an

already correlated system such as squeezed light.
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3.1 One-axis twisting

Let's consider the simplest nonlinear Hamiltonian, the square of a spin component, for example,

H = hXS_. This interaction leads to S+(/_) = S+(O)exp[itJ(S, + ½)], a rotation proportional to

Sz, where/_ is the strength of the interaction. If the initial state is on the equator of the sphere

(Fig. 2 (a)), the interaction twists the noise distribution (Fig. 2 (b)).

Z

)Y ly y

(a) O = 0, CSS I_, 0) (b)/_ = 0.2 (optimum) (c) U = 0.4 (ezcessive)

FIG. 2. Quasi-probability distribution Q(0, 4_) [6] for one-axis twisting. (S = 20,/_ = 2xt).

The increased and decreased variances are,

• S
1_+ _ _ (_S) 2

S
v_ = 7[(,,s)-, + _(_,_s)_] >_ 24-"s '/_

squeezin9 swirliness (at /.t = 24116S-213)

where/_S > 1 and _2S << 1 are assumed. The noise distribution is stretched by a factor of _oc in a

certain direction, while it is shrunk by the same factor in the orthogonal direction. This is nothing

but squeezing. However, the stretching of the distribution is not exactly along a geodesic of the

sphere, it is slightly S-shaped. The second term arises from this non-ideal effect, swirliness. The

deviation from the geodesic becomes comparable to the reduced width of the distribution when
is increased to the order of S -_I3. Then the variance reaches its minimum of S 1/3. Because of the

swirliness, it is impossible to further reduce the quantum noise by means of one-axis twisting.
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3.2 Two-axis counter-twisting

The swirliness can be canceled out if we twist the noise distribution simultaneously clockwise and

counterclockwise about two" orthogonal axes both normal to the mean spin vector (Fig. 3 (b)).

This can be done, for example, by the following Hamiltonian,

_x 2 S2_
H = hx(S},}_- S},_}2)= _(S+ - )

We refer to this as two-axis counter-twisting. The noise distribution is shrunk along a geodesic

and stretched along the orthogonal geodesic until it spans almost half the sphere. If we twist the

distribution more, it splits into two and no further improvement occurs.

y y y

X X

(a) _, = 0, css 10,0) (b) p = 0.203 (optimum) (c) # = 0.248 (excessive)

FIG. 3. Quasi-probability distribution Q(0, ¢) for two-axis counter-twisting. (S = 20, _ = 4xt).

3.3 Limits of noise reduction

5O
Let's compare the minimum variances of two

kinds of squeezed spin states. The dots show 20
the exact minimum attainable variances cal-

l0
culated numerically (Fig. 4). The variance .E

of the ordinary coherent spin state increases _ 5

linearly with S. One-axis twisting can reduce
it to the order of S 1/3. Two-axis counter- 2

twisting can further reduce it to 1/2.

0.5 _...._.'_"5o _0ot_.o-.a_xi._

FIG. 4. Minimum variances vs. S

4 Applications to Partition Noise Suppression

There are many systems which can be described as a spin system. Spin squeezing described

here offers better performance in these systems. For example, dispersion-less beamsplitters and

interferometers for bosons and fermions can be described as a spin system with S being the
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half of the total particle number N passing through them [7, 5]. The operator S, corresponds

to the half of the particle number difference NA - NB between two paths (A and B), and S+

transfers a particle from one pa_ (A) to the other (B). The outputs of 50% beamsplitters (i.e.,

(Sz) = 0) have the number and phase partition noises 6N=([A(NA - NB)]2)'n=2(AS,2) '/2 and

For ordinary linear beamsplitters, they are &N=x/_

and 6¢ml/v/N since the output is in CSS 17r/2,0). Their ratio can be changed by spin squeezing

without violating the uncertainty principle _N6¢ >__1. Physically, they can be realized as nonlin-

ear interferometers. Both self-phase-modulation HI=_x(N_ + N_)=21i)c(N2/4+S_) of particles

in both paths and mutual-phase-modulation HI=hxNANB=hx(N_/4 - S_) between particles in

different paths lead to one-axis twisting. Optical Kerr effect and Coulomb interaction give these

number-dependent phase modulations. These nonlinear beamsplitters can achieve either _Nw, N 1Is

or 6¢,_N -5/6 [8].

5 Summary

In summary, We have clarified the notion of squeezing in a spin system. Spin is squeezed if one of

the components normal to the mean spin vector has a variance smaller than S/2. We have shown

the principle for spin squeezing. The spin can be squeezed by establishing quantum correlations

among elementary spins. We have proposed the fundamental schemes for spin squeezing. One-axis

twisting can reduce the noise down to S 1/3 and two-axis counter-twisting can reduce it to 1/2.

We have also discussed possible applications of spin squeezing to the sub-quantum-limit partition

of quanta. Partition noise in either particle number or phase can be suppressed with a nonlinear

beamsplitter which performs spin squeezing.
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